1370-303-Radon 1370-304-11- Publication

Nucl. Geophys. Vol. 00, No. 0, pp. 000-000, 1987 Int. J. Radiat. Appl. Instrum. Part E Printed in Great Britain. All rights reserved

Field Measurements of In Situ ²²²Rn Concentrations in Soil Based on the Prompt Decay of the ²¹⁴Bi Counting Rate

L. R. STIEFF, C. B. STIEFF2 and R. A. NELSON3

¹ The Stieff Research and Development Co. Inc., P.O. Box 263, Kensington, MD 20895, U.S.A. ² Department of Computer Science, Loyola College of Baltimore, 4501 North Charles Street,

(Received 1 August 1986; in revised form 12 October 1986)

Indirect field measurements of the *in situ* ²²²Rn concentrations in sealed samples of soil have been made based on the prompt decay of the ²¹⁴Bi counting rate in the 2h interval immediately following sample collection. Subsequent ²¹⁴Bi measurements yield estimates of the ²²²Rn lost during sample collection and the concentration of ²²⁶Ra in the samples. These data may be used in the measurement of *in situ* ²²²Rn concentration gradients, the characterization of the state of ²²⁶Ra/²²²Rn equilibrium in soil samples and calculation of ²²²Rn surface flux.

INTRODUCTION

Recently, a set of indirect in situ 222 Rn and 226 Ra concentration measurements based on the prompt decay and subsequent build-up, respectively, of 214 Pb and 214 Bi (half-lives of 26.8 and 19.7 min) was completed on canned samples of soil and uranium mill trailings from the Grand Junction tailings pile, Grand Junction, Colorado. These and earlier prompt 214 Bi measurements on the Grand Junction tailings pile(2,3) suggest that on the basis of the prompt decay in the 214 Bi γ -counting rate it is possible to estimate the pre-collection 214 Bi counting rate in such samples at the time of sample collection, T_0 . For this field method, it is assumed that, in the 3-4 h prior to sample collection, the 214 Pb and 214 Bi in the sample prior to collection are essentially in secular equilibrium with the 222 Rn in the sample. Given this assumption, it is possible to indirectly estimate the concentration of the in situ 222 Rn in the sample at time T_0 and for the 3- to 4-h interval immediately preceding the collection and canning of the sample. This interval is determined by the time required for the 214 Pb and 214 Bi to come essentially into secular equilibrium with the in situ 222 Rn in the sample. Subsequent counting-rate measurements on the 214 Pb in these same canned samples over

Subsequent counting-rate measurements on the 214 Bi y-activity of these same canned samples over a period of approx. 30 days yield a Birect measurement of the 226 Ra concentration in the samples based on the final, equilibrium 226 Ra/ 212 Rn/ 214 Bi, counting rate. Additional data on the minimum 214 Bi counting rate, usually obtained in the period from 4 to 10 h after sample collection, also permit an estimate of the amounts of radonilost in the process of sample collection and canning and serves as a measure of the weakly-held, mobile fraction of 222 Rn in the sample at time T_0 .

The equilibrium 229 Ra/ 214 Bisconcentration data combined with the *in situ* 222 Rn concentration data at time T_0 are used to determine whether the 222 Rn concentration in the sample at the time of collection is (1) in secular equilibrium with the 126 Ra in the sample, (2) deficient or has lost 222 Rn compared to the final 226 Ra/ 212 Rn/ 214 Bisequilibrium value or (3) whether the sample contains an excess of unsupported 222 Rn. Unsupported 222 Rn is the 222 Rn which is introduced into the sample and is not produced by the decay of the 226 Ra in the sample. The 222 Rn found in excess of the final radion concentration produced by the 226 Ra in the sample when it is in secular radioactive equilibrium with its daughter products must be unsupported. However, a sample may have a net deficiency in 222 Rn at T_0 and still have received unsupported radon, having lost to its immediate surroundings some of the radon produced by the decay of the 226 Ra in the sample as well as a portion of the unsupported radon.

Baltimore, MD 21210, U.S.A.

Jacobs Engineering Group Inc., 5301 Central Avenue, N.E., Albuquerque, NM 87108, U.S.A.

000

L. R. STIEFF et al.

OBJECTIVES AND TEST-SITE DESCRIPTION

The objectives of these preliminary field measurements of the prompt decay and subsequent build-up of the ²¹⁴Bi counting rate on soil and tailings samples from the Grand Junction tailings pile were to test the capability of the prompt ²¹⁴Bi technique to:

1. Measure the concentrations of in situ ²²²Rn and ²²⁶Ra in different types of test covers and in the underlying tailings.

2. Evaluate the pre-collection state of equilibrium between ²²⁶Ra and ²²²Rn in these samples.

3. Characterize the source and mobility of the ²²³Rn in such samples.

4. Develop procedures for evaluating the effectiveness of specific tailings cover designs used to restrict the loss and/or migration of ²²²Rn from the tailings, and for monitoring the long-term performance of such covers.

5. Provide an additional means of directly studying the field and in the laboratory radon transport mechanisms in soil and uranium mill tailings. With prompt ²¹⁴Bi measurements it should be possible to evaluate the effects of such soil factors as porosity, permeability, moisture content, as well as changes in meteorological conditions etc. on radon transport.

6. Provide a means of calculating and predicting ²²²Rn surface flux based on the *in situ* ²²²Rn and ²²⁶Ra concentrations obtained on a set of soil samples collected at different depths from the surface.

Three test areas at the Grand Junction tailings pile were selected for this initial study:

- (i) The "Sand Box", a specially prepared 4.6 × 4.6 × 1.8 m deep test area into which six 30.5 cm layers of carefully homogenized tailings had been added. This area was covered by coarse, loose sand.
- (ii) The 1979 Asphalt Cover Test Area; an area of the tailings pile covered by an approx. 6-7 cm layer of specially prepared asphalt emulsion which in turn was overlain by a protective layer of adobe clay 17.8-30.5 cm deep. This test area is described in detail by Hartley et al.⁽⁴⁾
- (iii) The 1981 Barrier Field Test Area; this site included comparative tests of the following different cover systems: an area including multi-layer clay, asphalt emulsion and earthen cover systems. The prompt ²¹⁴Bi measurements were made only on the uncompacted adobe clay cover, a part of the earthen cover system. This test area is described in detail by Hartley et al. (5)

A detailed description of the results of the prompt ²¹⁴Bi field test and an evaluation of the data for the three test areas noted above is given in a report by Stieff.⁽¹⁾ However, only the data obtained on the uncompacted adobe test site, a part of the earthen cover system, have been summarized and selected for presentation in this paper.

The data for the uncompacted adobe are of particular interest because they demonstrate the unique capability of this new field method to measure the changes in the *in situ* concentration of unsupported ²²²Rn in soil samples as a function of depth. In addition, and perhaps of equal significance, these data combined with estimates of the soil porosity and moisture content were used to calculate the ²²²Rn surface flux in pCi/m² s at the time the sample was collected. If the data on the minimum ²¹⁴Bi counting rates (a measure of the mobile ²²²Rn in the sample) and the ²²⁶Ra ²¹⁴Bi equilibrium counting rates are considered, the potential exists to set both a lower and an upper limit on the expected ²²²Rn surface flux at the collection site.

SAMPLING AND COUNTING PROCEDURES

The uncompacted adobe clay from the earthen cover test area was collected using a 7.6 cm dia, thin-walled, steel Shelby coring tube with extensions. The soil in between the surface and the sampling interval was removed with an 11.4 cm dia gasoline-powered soil auger. The Shelby coring tube was then inserted in the cleared hole and driven approx. 12.7 cm into the ground to a

predetermined depth. Immediately after the removal of the Shelby tube from the hole, the clay in the bottom 7.6 cm of the core tube was transfered to an aluminum can 8.3 cm dia × 8.6 cm high. The can was then promptly sealed hermetically in the field with a commercial, hand-operated can sealer. Water immersion tests of sealed cans using this equipment at temperatures just below 100°C did not reveal any leaks. Time of collection and sealing were both noted. In most cases, a new hole was prepared for the collection of each sample. The collection process was repeated three or four times until either an obstruction was encountered or the maximum sampling depth used in this study (approx. 100 cm) was achieved. The samples were then transported as rapidly as possible (approx. 10–15 min) to the mobile laboratory where the γ -spectrometric counting equipment had been set up.

The prompt decay of the ²¹⁴Pb and ²¹⁴Bi in the canned samples was measured using shielded dual 7.6 × 7.6 cm Nal scintillation detectors and photomultipliers coupled through a multiplexer to a multichannel analyzer and printer. A detailed description of this dual Nal counting system has been published by Zelle et al.¹⁶ The counting interval used was 1000s unless otherwise noted and the measurements were taken on the ²¹⁴Bi 609 keV y peak. At least three 1000s counts were obtained on each of the samples in the first 2.5–3 h after sample collection. The prompt decay and subsequent build-up of the ²¹⁴Bi in the samples was followed by 10 or more additional measurements over a period of 600–700 h.

The 214 Bi counting data obtained on the samples are plotted on both linear and semi-logarithmic graph paper. In both plots the sum of the counts from the two NaI detectors corrected for background is plotted against the time that had elapsed from the collection of the sample to the midpoint of the specific 1000s counting interval. The semi-logarithmic plot is used to estimate the 214 Bi counting rate at T_0 , i.e. the counting rate of the 609 keV 214 Bi y-peak in the sample for the 3- to 4-h period immediately preceding the collection of the sample.

The graphical estimate of the T_0 value is obtained either by the least-squares method or by fitting a straight line through the initial data points for the decay of the ²¹⁴Bi in each sample and noting the intercept of this line with the ordinate when the value of the elapsed time is zero. For some samples, particularly those which have experienced relatively small losses of ²²²Rn during the sample collection and canning processes, this estimate at T_0 will closely approximate the actual ²²²Rn/²¹⁴Bi concentration at T_0 in the sample. However, for those samples which have experienced significant ²²²Rn sampling losses, the graphical T_0 estimate can be improved by noting the "y" coordinate of the intercept of the T_0 line and a vertical line with the general equation x = a where "a" lies between 5 and 20 min. The selection of the value for "a" is directly related to the magnitude of the sampling loss. For a more detailed discussion of this point see the following section on the computer modeling of the prompt decay and build-up of the ²²⁶Ra ²²²Rn ²¹⁴Bi series.

It is important to emphasize here that in the prompt 214Bi method it is assumed that in the 3- to 4-h period prior to the collection of the sample, the concentration of the 222Rn has remained essentially constant. In this steady-state or quasi-equilibrium condition (not necessarily a condition of secular radioactive equilibrium) the 214Bi counting rate and the number of atoms of 214Pb and 214Bi in the sample have also remained relatively constant. During this time period only the most recent additions of 222Rn produced from the decay of the 226Ra in the sample (a relatively small fraction of the total number of 222Rn atoms in the sample) would not be in secular equilibrium with its short-lived daughter products, 214Pb and 214Bi. Further, during this short time interval, any small, recent additions of unsupported 222Rn to the sample should be essentially balanced by corresponding losses of unsupported 222Rn from the sample, leaving the 214Bi counting rate attributable to this source essentially unchanged, i.e. the unsupported 222Rn flux is essentially constant. The assumption also implies that if some of the in situ 222Rn in the sample is being lost to the surroundings, the losses should be small and incremental rather than large and abrupt. This short-term, steady-state requirement of the prompt 214Bi method does not preclude the long-term net loss or gain of 222Rn from a soil sample, but rather it underscores the point that during this period small, incremental changes can be accommodated whereas large, abrupt changes in the in situ 222Rn concentration, either losses or gains, will introduce uncertainties in the estimate of the in situ 222Rn concentration.

In general, a large, abrupt loss of 222 Rn within the 3- to 4-h precollection interval cannot be distinguished, on the basis of the prompt 214 Bi measurements, from the sampling losses which may occur during the collection of the sample. The case of an abrupt pre-collection loss would yield a 214 Bi counting rate at T_0 somewhat greater than would be associated with the actual average in situ

L. R. STIEFF et al.

000

 222 Rn concentration in the sample for that period. The magnitude of this discrepancy would, of course, depend both on the net amount of 222 Rn lost and the time the loss occurred. On the basis of the prompt 214 Bi counting rate, the effects of such pre-sampling loss would be difficult to infer at T_0-4 h and would merge with the sampling losses as the pre-collection loss approached T_0 . In practice, the assumption of an essential steady-state condition in the short time interval preceding the collection of the sample between 222 Rn and its daughters 214 Pb and 214 Bi seems to be supported both by the prompt 214 Bi measurements that have been made to date as well as the modeling studies.

COMPUTER MODELING OF THE PROMPT DECAY AND BUILD-UP OF THE $^{226}Ra/^{222}Rn/^{214}Pb/^{214}Bi$ SERIES

In order to understand in detail the interrelated processes of decay and build-up, a computer model of the decay and build-up of the part of the 238 U decay chain that contained the daughters 220 Ra, 218 Po, 214 Pb, 214 Bi, 214 Po and 210 Pb has been developed. The model, based on the number of atoms of daughter products in equilibrium with 1 μ g of 238 U, calculates for specified time intervals the (1) total number of decays of each daughter product accrued from T_0 , (2) number of decays of each daughter product remaining at the end of a specific time interval, (3) number of atoms of each daughter product present plus those formed during the time interval.

The model permits specification, at time T_0 , of the initial, pre-collection deficiency or excess of ²²²Rn when compared with the final ²²⁶Ra/²²²Rn/²¹⁴Bi equilibrium number of atoms or counting rate. The model also permits specifications of the sampling loss from 0 to 100°_{\circ} as a percentage of the initial number of atoms, at time T_0 originally present (or the counting rate). Finally, the model permits specification of the percentage of unsupported ²²²Rn present and the percent sampling loss associated with this fraction of the ²²²Rn in the sample at time T_0 . This requirement is a consequence of the observation that, in general, the sampling loss associated with the unsupported ²²²Rn fraction is almost always close to or equal to 100°_{\circ} whereas the sampling loss associated with the supported ²²²Rn fraction is variable with a maximum loss at between $30-50^{\circ}_{\circ}$ for most samples.

From Fig. 1 it can be seen that the simplest case does not require the model and occurs when the 226 Ra, 222 Rn and 214 Bi in a sample are in secular equilibrium and have experienced a zero sampling loss. In this case, the number of 222 Rn and 214 Bi atoms formed is equal to the number of 222 Rn and 214 Bi atoms decaying in any given time interval, and the 222 Rn/ 214 Bi counting rate at time T_0 is equal to the final 226 Ra/ 222 Rn/ 214 Bi counting rate. On either a regular or a semi-logarithmic plot of the counting rate or the number of atoms remaining vs time, the data points lie on a horizontal line passing through the number of atoms originally present at T_0 or the T_0 counting rate.

In addition, it can be seen in Fig. 1 that the semi-logarithmic plot for a sample that has experienced a steady-state, pre-collection 222 Rn loss of 25% and a 222 Rn sampling loss of 0%, also is nearly a straight line, does not pass through a minimum, and shows that the number of 214 Bi atoms for the first 1.5 h after T_0 remains essentially a constant, i.e. the line passing through the data points is essentially horizontal. Even in the first 10 h the increase in the counting rate or the number of atoms of 214 Bi for this case is essentially linear and has increased by only slightly more than 2%. It is this relationship that provides the basis for the statement that the contribution of 222 Rn from the decay of the 226 Ra in the sample in the 3-4 h preceding sample collection is relatively small.

Finally, for the case of the sample with a pre-collection 222 Rn loss of 0°_{0} and a 25°_{0} 222 Rn sampling loss, it can be seen in the semi-logarithmic plot (Fig. 1) that the prompt decay curve decreases at a relatively uniform rate between $T_{0} + 900 \, \text{s}$ and $T_{0} + 4000 \, \text{s}$. Shortly after the minimum number of atoms (counting rate) has been reached, approx. $T_{0} + 16,000 \, \text{s}$ (Fig. 2), the 25°_{0} pre-collection loss and the 25°_{0} sampling loss plots coincide and begin a very slow, almost linear increase in the number of atoms (counting rate) for the next 5-10 h.

For a sample that has experienced a pre-collection loss, and has not lost 222 Rn during the sampling or canning process, the T_0 pre-collection number of 214 Bi atoms or counting rate for 214 Bi is obtained graphically by passing a straight line through the data points and noting the intercept on the "y" axis. Useful data for this graphical solution can be obtained as late as 5-10 h after T_0 . This procedure yields a good T_0 estimate but is applicable to only a relatively small number of situations because most samples—even if they have experienced a pre-collection loss of 222 Rn—lose at least a little additional radon in the sampling process.

Figure 2 is a plot from T_0 to $T_0 + 40,000\,\mathrm{s}$ of the prompt ²¹⁴Bi decay of samples in ²²⁶Ra ²²²Rn ²¹⁴Bi secular equilibrium which have experienced 10, 25, 50 and 100% losses of ²²²Rn during the sampling process. The slopes of the linear segments of the curves passing through these sets of prompt ²¹⁴Bi data points (the T_0 lines or decay) are clearly a function of the percent sampling loss.

A detailed plot of the four different cases in Fig. 2 for the time interval T_0 to $T_0 + 7200 \, \mathrm{s}$ suggests that the optimum time to make the prompt ²¹⁴Bi measurement is from an elapsed time of approx. $T_0 + 900 \, \mathrm{s}$ (15 min) to an elapsed time of approx. $T_0 + 5400 \, \mathrm{s}$ (90 min). In this interval, the relationship between the data points for the full range of possible sampling losses is sufficiently linear to permit a good graphical estimate of the ²¹⁴Bi concentration or activity at T_0 . The data from the model calculations for the interval T_0 to $T_0 + 1800 \, \mathrm{s}$ (30 min) suggest that, as the sampling losses increase, the estimate of the ²²²Rn ²¹⁴Bi concentration at T_0 can be improved if the "y" intercept with the prompt ²¹⁴Bi decay line is obtained from a line parallel to the "y" axis with an equation of the general form x = a, where the constant "a" varies from approx. 300 to 1200 s, depending on the percentage of radon lost in the sampling process. For example, see Fig. 1. The offset is dictated by two factors: (1) the time required for the now unsupported ²¹⁸Po (half-life 3.05 min) to decay and (2) the percent sampling loss or the slope of the prompt ²¹⁴Bi decay line.

An estimate of the total sampling loss including both the supported and unsupported 222 Rn can be made based on the minimum 214 Bi counting rate which usually occurs approx. 4–4.5 h after sample collection (see Fig. 2). The sampling loss is a measure of the mobile, relatively weakly-held, supported 222 Rn in the sample and is obtained by subtracting the minimum 214 Bi counting rate (M) from the T_0 counting rate (T_0) and dividing by the T_0 counting rate, i.e. percent sampling loss = $T_0 = T_0 = T_0$. This estimate includes the total amount of supported $T_0 = T_0$ lost both prior to sample collection and during the sampling process.

Figure 3 shows the plot of the case where the calculated 25% sampling loss and 25% pre-collection steady-state loss have been combined. As in the example previously described, this plot of the combined losses after passing through its minimum, coincides with the plot for a sample that has

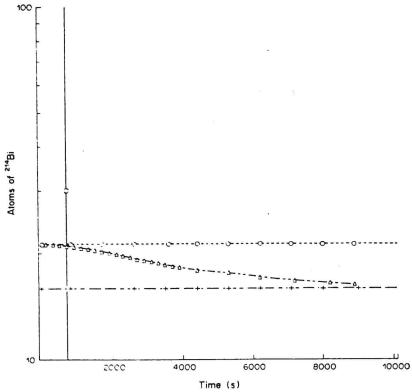


Fig. 1. Semi-logarithmic plot of the calculated number of atoms of 214 Bi remaining vs time for the following cases: 226 Ra 222 Rn 214 Bi equilibrium (\bigcirc), a 25% sampling loss of 222 Rn (\triangle) and a 25% pre-collection loss of 222 Rn with a 0% sampling loss of 222 Rn (+). The equation of the vertical line is x=800 s (\square).

L. R. STIEFF et al.

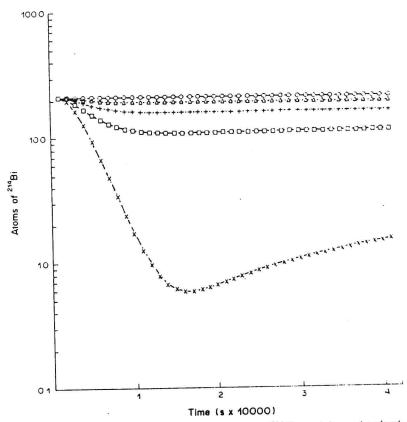


Fig. 2. Semi-logarithmic plot of the calculated number of atoms of ²¹⁴Bi remaining vs time for the following cases: 0% pre-collection loss of ²²²Rn (\bigcirc) and 10 (\triangle), 25 (+), 50 (\square) and $100(\times)^{\circ}$, sampling losses of ²²²Rn.

experienced a pre-collection, steady-state loss of approx. 43.8°_{0} . An estimate of the ²²²Rn deficiency in this sample at T_{0} is obtained by subtracting the final equilibrium ²¹⁴Bi counting rate (Eq) from the ²¹⁴Bi counting rate at T_{0} and dividing by the equilibrium counting rate, i.e. percent ²²²Rn deficiency = $(Eq - T_{0})/Eq \times 100$. An estimate of the mobile, weakly-held fraction of supported ²²²Rn is obtained by subtracting the minimum ²¹⁴Bi counting rate (M) from the equilibrium counting rate (Eq) and dividing by the equilibrium counting rate, i.e. percent mobile fraction (supported) = $(Eq - M)/M \times 100$. This estimate approaches the emanating coefficient of the sample.

The most difficult case to evaluate quantitatively involves samples with overall pre-collection deficiency in ²²²Rn which have received additions of unsupported ²²²Rn. From the point of view of the prompt decay of ²¹⁴Bi, the unsupported ²²²Rn which is in ²²²Rn ²¹⁴Bi equilibrium is indistinguishable from the supported ²²²Rn which is also in ²²²Ra ²¹⁴Bi equilibrium. Any recently introduced unsupported ²²²Rn, which has not yet had time to reach equilibrium with its ²¹⁴Bi daughter cannot, of course, be detected.

Samples which contain a pre-collection excess of unsupported 222 Rn are relatively easy to evaluate (see Fig. 4). An estimate of this excess, unsupported 222 Rn can be obtained by subtracting the final, equilibrium 226 Ra/ 222 Rn/ 214 Bi counting rate (Eq) from the counting rate at T_0 and dividing by the equilibrium counting rate, i.e. percent 222 Rn excess = $(T_0 - Eq)/Eq \times 100$. If, in this case, the sample experiences an additional sampling loss in which the minimum 214 Bi counting rate falls below the final equilibrium 214 Bi counting rate, the estimated excess of unsupported 222 Rn based on the equilibrium value will be the minimum estimate. The maximum estimate of the unsupported 222 Rn in the sample would be obtained by subtracting the minimum counting rate from the counting rate at T_0 and dividing by the counting rate at T_0 , i.e. the total sampling loss would be assigned to the unsupported 222 Rn fraction and the pre-collection deficiency would be defined by the minimum counting rate.

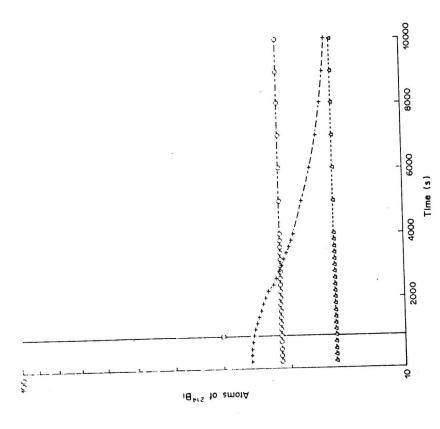


Fig. 4. Semi-logarithmic plot of the calculated number of atoms of 214 Bi remaining vs time for the following cases: 228 Ra $^{/228}$ Ra $^{/214}$ Bi equilibrium (O), a 20 ", excess of unsupported 222 Rn the following cases: 228 Rn $^{/214}$ Bi equilibrium (O), a 20 ", excess of unsupported 222 Rn (+) and a 40 % sampling loss of 222 Rn with a 0 % sampling loss of 222 Rn with a 0 % sampling loss of 222 Rn with a 10 % sampling loss of 222 Rn 10 Directory in 10 Bine is 10 Bine in 10 Bine is 10 Bine in 10 Bine is 10 Bine in 10 Bine is 10 Bine in 10 Bine

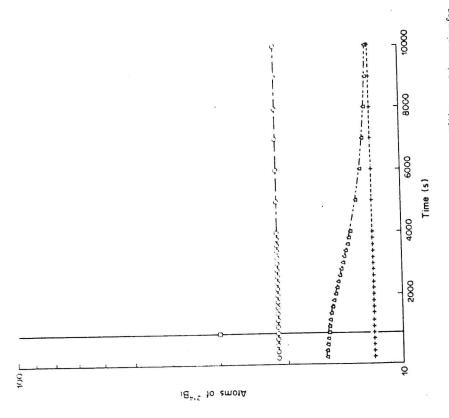


Fig. 3. Semi-logarithmic plot of the calculated number of atoms of 214 Bi remaining vs time for the following cases: 226 Ra $/^{222}$ Rn $/^{214}$ Bi equilibrium (\bigcirc) a combined 25% pre-collection loss of 222 Rn (\triangle) and a 43.75% pre-collection loss of 222 Rn of 222 Rn (\triangle) and a 43.75% pre-collection loss of 222 Rn with a 0% sampling loss of 222 Rn (+). The equation of the vertical line is x=1000s (\square).

3

L. R. STIEFF et al.

000

EARTHEN COVER TEST AREA MEASUREMENTS

Sample description and data

The 1981 earthen cover system was designed to test the effectiveness of four different ²²²Rn barriers composed of 1.2 m thick layers of (1) Mancos Shale, (2) bentomte clay, (3) compacted adobe clay (each of these covered in turn with a 1.8 m thick layer of uncompacted adobe and (4) a 3 m thick layer of uncompacted adobe clay. This test area is fully described by Hartley et al.⁵ The samples for the prompt ²¹⁴Bi measurements were collected from four separate core holes in the 3 m thick cover of uncompacted adobe. The sample holes were located at the side of the column test facility access road that climbed the 3 m, uncompacted adobe cover at the southern end of the test area. The exact elevation of the cores above the tailings is difficult to establish but it is estimated that the collars of the core holes were at least 1.5–2 m above the tailings.

The semi-logarithmic plots of count rate vs time for the first 2 h 30 min of the measurements for samples EC-A, EC-B, EC-C and EC-D are given in Fig. 5. The linear plots of counting rate vs time up to 6 h for these four samples are given in Fig. 6. Figure 7 is a plot of counting rate vs time up to 700 h for samples EC-C and EC-D. The critical estimates of T_0 , minimum and equilibrium $^{2+4}$ Bi counting rates are summarized in Table 1.

Discussion

The data from Table 1, and linear plots for samples EC-A, EC-B, EC-C and EC-D (Figs 6 and 7), are typical of samples that have large excesses of unsupported ²²²Rn and show that, with the exception of sample EC-A, a very large fraction of the *in situ* ²²²Rn in the samples is lost in the sample collection and canning process. The decay pattern of EC-A, the near surface sample (Fig. 6), shows a distinct minimum (3.12 count/g 10³ s) before building-up to its final equilibrium value (3.88 count/g 10³ s; Table 1). The equilibrium values for the remaining three samples, EC-B, EC-C

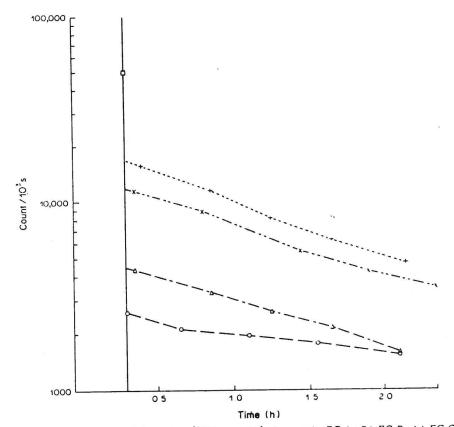


Fig. 5. Semi-logarithmic plot of the prompt 214 Bi count/ 10^3 s for samples EC-A (\bigcirc), EC-B (\triangle), EC-C (\times) and EC-D (+) vs time from T_0 , the time of collection, to T_0 + 2 h 30 min. The equation of the vertical line is x = 20 min (\bigcirc).

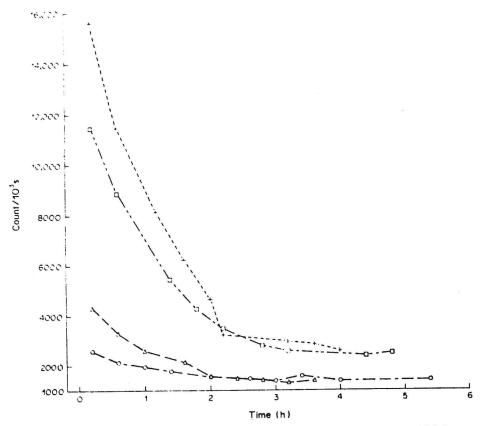


Fig. 6. Plot of the prompt $^{2+4}$ Bi count 10^3 s for samples EC-A (\bigcirc), EC-B (\triangle), EC-C (\square) and EC-D (+) vs time from T_0 to T_0 + 6 h.

and EC-D [approx. 2.6-3.1 count g 10³ s (see Table 1)] are thought to be representative of the average values for the original concentrations of ^{2.38}U and ^{2.26}Ra in the adobe clay. If this interpretation is accepted, then it would appear that EC-A has received some additional, probably unsupported ^{2.26}Ra, possibly as surface contamination. There does not appear to be any vertical increase in ^{2.26}Ra concentration with depth as might be expected if the underlying tailings were the source of the ^{2.26}Ra contamination.

In addition to experiencing a rapid initial decline in the ²¹⁴Bi counting rate as a result of major losses of unsupported ²²²Rn in the sampling process, both samples EC-C and EC-D also exhibit a subsequent slow decay of the ²¹⁴Bi counting rates to their final equilibrium value [1454 and 1414 count 10³ s, respectively (see Figs 6 and 7)]. This long-term decay pattern may be related to the presence of small amounts of residual unsupported ²²²Rn which remained in the sample following the sample collection and canning process. The decay of the ²¹⁴Bi associated with this residual unsupported ²²²Rn would, of course, be controlled by the 3.8 day half-life of ²²²Rn.

The data on the prompt decay of the ²¹⁴Bi counting rate in these samples, as well as similar measurements made on other samples, lead to the conclusion that the unsupported ²²²Rn in the samples is very weakly bound, is very mobile and is easily lost during the sample collection process. In this respect, the sampling losses associated with the unsupported ²²²Rn are similar to the sampling losses associated with the interstitial, mobile, fraction of the supported ²²²Rn resulting from the decay of the ²²⁶Ra in the sample and deposited during the emanation process in the pore spaces of the sample.

The semi-logarithmic plots for samples EC-B, EC-C and EC-D (Fig. 5) are quite linear, yield good estimates of the in situ 222 Rn concentration at T_0 , and are representative of samples in which the prompt 214 Bi decay is dominated by the unsupported 222 Rn lost in the sampling process. Only a relatively small contribution to the 214 Bi counting rate can be assigned to the original 226 Ra in the sample.

L. R. STIEFF et al.

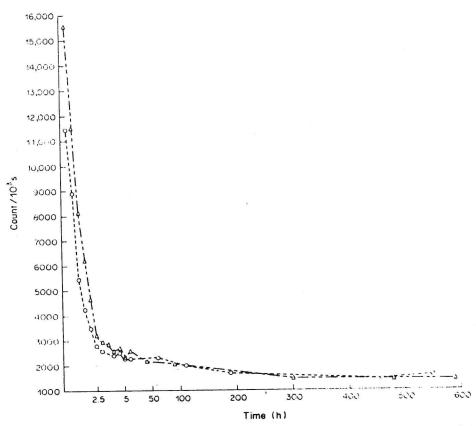


Fig. 7. Plot of the ²¹⁴Bi counts/10³ s for samples EC-C (O) and EC-D (Δ) vs time from Γ_0 to $\Gamma_0 = 700$ h.

The data from the earthen cover test area is of special interest because it is now possible not only to make direct field measurements of the *in situ*, unsupported ²²²Rn concentration in these samples but also to define, in a quantitative way, the changes in the concentration of unsupported ²²²Rn as a function of sample depth. For example, Table 2 gives, for samples EC-A, EC-B, EC-C and EC-D, the excess, unsupported ²²²Rn/²¹⁴Bi counting rates corrected for the amounts of supported ²²²Rn in the samples at equilibrium. Table 2 also presents, based on the excess, unsupported ²¹⁴Bi counting rate,

Table 1. A summary of the T₀, minimum and equilibrium ²¹⁴Bi counting rates for samples FY-81 FC-A, FC-B, FC-C and FC-D from the earthen cover test area. Grand Junction tailings pile

Sample No. Depth (cm)	T_0 (counts/10 ³ s) T_0 (count/g 10 ³ s) Elapsed time (h) $^{\circ}_{0}$ 122Rn pre-collection excess = $(T_0 - Eq)/Eq \times 10^2$	Minimum (count 10^3 s) Minimum (count g 10^3 s) Elapsed time (h) $^{\circ}_{0}$ 122 Rn sampling loss (total) = $(T_0 - M) T_0 \times 10^2$	Equilibrium (count 10^3 s) Equilibrium (count g 10^3 s) Elapsed time (h) " $_0^{222}$ Rn mobile fraction (supported) = $_0 E_q - M / E_q \times 10^3$
EC-A 5.1-12.7	2680 (x = 15 min) (6.06) 00:00:00 56.4% (excess)	1378 (3.12) 03:10:05 48.6° a	1714 (3.88) 501.30-25 19.61.
EC-B 30.5-38.1	4570 (x = 20 min) (9.85) (0:00:00 220% (excess)	1307 (2.82) 03:22:50 71.4%	1429 13 081 564 00 50 8 53 %
EC-C 55.9-63.5	12,000 (x = 20 min) (21,58) 00:00:00 725 % (excess)	Two small intermediate minimums	1454 (2.61) 682.38/15
EC-D 94.0-101.6	17,500 (x = 20 min) (35.25) 00:00:00 1140°; (excess)	2586 Two small intermediate minimums — —	1414 (2.85) 596:39-40 -

 $Eq = \text{Equilibrium}^{-2+4} \text{Bi counting rate}$. $T_0 = T_0^{-2+4} \text{Bi counting rate}$. $M = \text{Minimum}^{-2+4} \text{Bi counting rate}$ x = 18 min and x = 20 min equations of vertical lines used to obtain T_0 counting rate.

LaSe 2. A comparison of the excess, unsupported $T_0^{-212} \text{Rn}^{-214} \text{Bi (count.g. } 10^3 \text{ s)}$ and the inferred $^{212} \text{Rn}$ concentration in pCi cm³ in samples FCA TC48. FC4C and FC4D with the calculated concentration in pCi cm³ of $^{222} \text{Rn}$ obtained from the RACOM radon diffusion model

T_0 excess ²²² Rn ²¹⁴ Bi (observed) (count g 10 ³ s)	T_0 concentration of ²²² Rn (inferred) (pCi/cm ³)	Concentration of ²²² Rn (calculated) (pCi/cm ³)
2.18	1.7	7.0
6	23.8	27.6
18.97	66.8	50.1
32.4	114.1	90.7
	2.18 6 18 9	2.18 7.7 6 23.8 18.95 66.8

 $T_0 = x \cos^{-1.17} R n^{-2.14} R i = T_0 \text{ (count g 10}^3 \text{ s)} - F_4 \text{ (count g 10}^3 \text{ s) (see Table 1)}.$

the inferred concentrations of the excess, unsupported ²²²Rn (pCi/cm³) in the total pore space of the samples (assumed clay porosity = 0.40). Table 2 also gives, for comparative purposes, the calculated average concentration in the four samples of the pCi/cm³ of ²²²Rn in the total pore space using the computer code RAECOM.⁽⁵⁾ The RAECOM calculations assume a clay porosity of 0.4, a 10% moisture content, a density for the clay of 1.62 g/cm³, an emanation fraction of 0.30, and an assumed ²²⁶Ra concentration in the underlying tailings of approx. 1000 pCi/g.

From Table 2 it can be seen that the agreement between the initial calculations of the ²²²Rn concentrations in pCi cm³ from the diffusion model and the pCi/cm³ of ²²²Rn based on the T₀ excess ²²²Rn ²¹⁴Bi counting rates is reasonably good. It would appear from this agreement that the initial model assumptions were not unreasonable. Reductions in the discrepancies between the two sets of values, particularly for samples EC-C and EC-D, could be achieved by a number of different adjustments in the model assumptions including increasing the tailings ²²⁶Ra concentration from

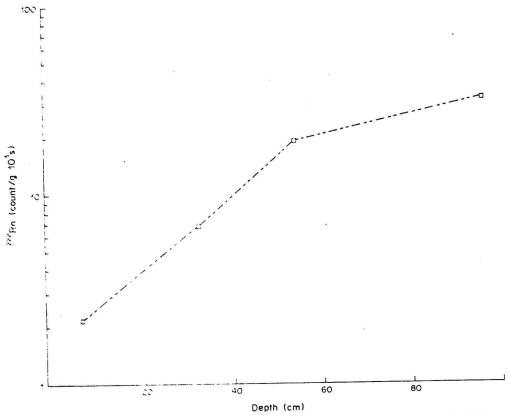


Fig. 8. Plot of the excess, unsupported ²¹⁴Bi counts g 10 s for samples EC-A, EC-B, EC-C and EC-D vs depth of the sample (cm).

000

1000 to 1200 pCi/g or increasing the emanating fraction from 0.30 to 0.35. Both changes would fall well within the observed range of these values at the Grand Junction tailings pile. If, however, the agreement between the two sets of observations is improved for samples EC-A, EC-C and EC-D, it appears that the disagreement between the two sets of values for EC-B will increase.

Finally, the RAECOM model gives a calculated ²²²Rn flux out of the surface of approx. 63 pCi m². This value may be compared to an average value of approx. 75 pCi m² s obtained from long-term flux measurements made over the uncompacted adobe cover. The example noted above suggests that if the measured and calculated profiles of unsupported ²²²Rn concentration are in reasonably close agreement, the calculated ²²²Rn flux from the surface based on the prompt ²¹⁴Bi measurements, should also be in general agreement with traditional surface flux measurements.

SUMMARY AND CONCLUSIONS

It is clear that in order to more fully evaluate the potential of the prompt ²¹⁴Bi technique, many additional field and laboratory tests must be undertaken. However, the available data from this preliminary set of measurements suggest the following:

- 1. A good, indirect measurement of the *in situ* concentration of 222 Rn at the time of sample collection, T_0 , can be made based on a field method of measuring the prompt decay of 214 Bi counting rate in sealed samples of soil or tailings.
- 2. A good, indirect measurement of the state of 226 Ra. 222 Rn equilibrium at the time of sample collection can be made based on the T_0 measurement of the 222 Rn 214 Bi concentration and subsequent 214 Bi measurements made after the 226 Ra in the sealed samples of soil or tailings has re-established secular equilibrium with the 222 Rn and 214 Bi in the samples.
- 3. A good estimate of the concentration of excess, unsupported 222 Rn in samples of soil or tailings at the time of sample collection (a special case of Conclusion 2 above) can be made based on the difference between the T_0 and the final, equilibrium 214 Bi counting rates.
- 4. Estimates of the 222 Rn lost in the sampling process and the fraction of mobile, relatively weakly held, supported 222 Rn in samples of soil or tailings at the time of sample collection can be made based on a measurement of the prompt minimum 214 Bi counting rate and either the T_0 or the final 226 Ra/ 214 Bi equilibrium counting rate.

Should additional field and laboratory tests of the prompt 214 Bi technique support the preliminary measurements that have been made, it should be possible, using the data from the T_0 , minimum, and final equilibrium 214 Bi counting rates, to do the following:

- (i) Provide a means of directly measuring in the field the concentration of both supported and excess, unsupported ²²²Rn in soils or tailings samples as a function of the depth of the sample and of calculating the surface ²²²Rn flux based on the gradient data.
- (ii) Provide a field method capable of studying the ²²²Rn transport mechanisms in soils and uranium mill tailings as well as a laboratory method capable of measuring experimental, unsupported ²²²Rn concentration gradients and studying the diffusion and adjective components of radon transport.
- (iii) Determine the effectiveness of specific tailings cover designs as ²²²Rn barriers on the basis of measured excess, unsupported ²²²Rn concentration gradients and the calculated ²²²Rn flux from the surface of the cover and provide an additional tool for use in monitoring the long-term performance of tailings covers used in the U.S. Department of Energy Uranium Mill Tailings Remedial Action UMTRA program.
- (iv) Provide a field method for measuring the concentrations of ²²⁶Ra and in situ ²²²Rn in soil profiles at building sites prior to the start of construction, characterizing the mobility of the ²²⁶Ra and in situ ²²²Rn in these profiles.

calculating the maximum and minimum 222Rn surface flux and providing an improved basis for assessing the potential hazard from the mobile, unsupported 222 Rn at such sites.

4ccnowledgements. The assistance of Mr G. Dechant and Mr K. Karp in the planning phase of this study is acknowledged with pleasure. Mr Dechant's assistance during the collection of the samples on the tailings pile requires additional acknowledgement, for without his help in this area the samples could not have been obtained. H. Stieff's many contributions were indispensible to the success of this field test and they are acknowledged with special appreciation.

This paper is based on work performed under the U.S. Department of Energy Contract DE-AC07-76GJ 01664 for the U.S. Department of Energy, Grand Junction Area Office, Idaho Operations, under Subcontract No. 82-577-S for the Bendix Field Engineering Corp.

REFERENCES

- 1. Stieff L. R. Letter Report, U.S. Department of Energy, Grand Junction Area Office (1986).
- Stiell L. R. U.S. Department of Energy Open-File Report GJ/TMC-05 (1983).
- 3. Stieff L. R. Proc. 6th Symp. on Uranium Mill Tailings Management 1983, Colorado State Univ., Fort Collins, Colo., pp. 307-316 (1984).
- Hartley S. N. et al. 1979 Annual Report PNL-3290, Pacific Northwest Lab., Richland, Wash. (1980).
- Hartley J. N., Gee G. W., Baker E. G. and Freeman H. D., 1981 Annual Report PNL-4539, Pacific Northwest Lab., Richland, Wash. (1983).
- Zeile P. W., Kretz N. D., Rayno D. R. and Kisieleski W. E. Proc. 4th Symp. on Uranium Mill Tailings Management 1981, Colorado State Univ., Fort Collins, Colo., pp. 181-192 (1984).
- Rogers V. C., Nieilson K. K. and Kalkwarf D. R. Report NUREG/CR-3533, prepared for the U.S. Nuclear Regulatory Commission, Washington, D.C. (1984).