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Edaphic and meteorological
parameters as determinants
of radon exhalation and its
environmental implication in
Peruvian agroecosystems

B. Pérez:23™ L. C. Stieff%*, R. E. Ponce-Amanca®*, C. J. Guevara-Pillaca®* & D. Palacios*

Radon exhalation is a natural process by which atoms of the radioactive gas radon diffuse in the soil
and then exhale to an indoor and/or outdoor environment. High radon concentration levels, possibly
from high radon exhalation rate levels, can generate an impact on public health and environmental
safety, particularly in agricultural areas where prolonged exposure may affect nearby populations.
While studies have examined radon exhalation, few have focused on modeling its behavior in
agricultural settings or identifying key environmental and soil parameters that influence its variation.
This study addresses this gap by applying Artificial Neural Network (ANN) models and Monte Carlo
methods. Three distinct approaches were developed based on radon exhalation measurements from
four Peruvian agricultural regions, incorporating meteorological and soil physicochemical data. First,
the ANN model determined environmental factors affecting radon exhalation, achieving R? values of
0.7949 (training) and 0.7656 (validation). Second, simulations analyzed radon diffusion under varying
wind conditions, assessing dispersion risks. Third, gamma radiation measurements quantified radon
progeny contributions (2.82 X 10™% 4 1.15 x 10~ efficiency) for soil moisture detection. This
integrated methodology advances understanding of agricultural radon dynamics, supporting improved
radiological safety protocols and soil monitoring techniques.

Keywords Radon exhalation, Environmental parameters, Soil characteristics, Artificial neural networks,
Monte Carlo methods, Public health risk

Radon (***Rn) is a radioactive noble gas that originates from the decay of 2*®U in the Earth’s crust. A key feature
of the radon gas is its move through porous media such as soil, rock fractures, and building foundations. In
soil, radon migrates primarily via diffusion and advection through pore spaces, with its movement influenced
by soil permeability, porosity and moisture content'2. Once released into the air, it diffuses mainly through
diffusion but can also its movement can be affected by advection (wind) and convection (temperature-driven air
movement) under certain atmospheric conditions’. This makes radon flux—the rate at which radon escapes from
the soil-a useful measure for studying underground geological activity and assessing radiation risk.

Historically, researchers have leveraged radon flux measurements to detect uranium deposits*, map fault
zones®, even predict indoor radon exposure risks®’, and tracing carbon dioxide fluxes®-demonstrating its
versatility as a natural tracer. One notable study by Jinmin Yang in Germany revealed complex interactions
between radon flux and environmental factors such as air and soil temperatures, air pressure, and especially soil
moisture. Their findings showed that low moisture increases radon flux up to a threshold (~10%). At higher soil
wetness (>10%), the flux rate decreases gradually®1°.

These observations align with theoretical expectations, as moisture content modulates radon’s diffusion
pathways. Nonetheless, factors like grain size and porosity also play a role, and their combined effects are still
not fully understood'2. For this reason, further independent, site-specific studies are essential to improve our
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understanding of radon dynamics across different environments, particularly in agricultural systems where both
direct exposure and radon progeny influence radiological safety and measurement accuracy.

Traditionally, mathematical-physical models, including those based on Darcy’s Law and diffusion equations,
have been used to describe radon transport!''2. While these models provide valuable insights, they often rely on
simplifying assumptions and may fail to capture the variability observed in real-world environments. Moreover,
they do not account for the stochastic nature of the radioactive decay process!>. Complementarily, geo-statistical
methods have been employed to interpolate radon flux data spatially, yet these approaches do not directly
account for the physical transport mechanisms underlying radon migration!+1,

In recent years, more advanced approaches, such as machine learning (ML), have been adopted due to the
availability of large datasets and advances in computational capacity. Algorithms such as k-Nearest Neighbors
(kNN), Artificial Neural Networks (ANN), Support Vector Machines (SVM), Random Forests (RF), and GBM
(Gradient Boosting Machine), have been successfully applied in environmental prediction tasks. These methods
can capture nonlinear and complex relationships among multiple variables directly from datasets without strict
assumptions!’ 1.

In parallel, Monte Carlo (MC) methods have been used to simulate the stochastic behavior of radon
transport at the atomic scale, particularly the random decay processes and trajectories of radon atoms and their
progeny. For example,'* used MC methods to model radon atom pathways and lifetimes, capturing microscopic
transport mechanisms beyond the reach of deterministic models. These simulations complement ML analyses
by providing fundamental physical insights.

In this study, four radon flux surveys across Peruvian agricultural sites between May and August 2024 were
conducted. The relationship between radon exhalation and environmental parameters, including meteorological
conditions and soil physicochemical properties, was investigated using ANN. Additionally, MC methods
simulated the stochastic transport of radon atoms through air, driven by experimental radon flux survey data.
These simulations supported complementary studies on radiological risk from airborne radon and progeny
displacement, and the biasing effects of short-lived progeny on soil moisture measurements via gamma-ray

spectroscopyzo’23 4

Materials and methods

This section describes the fieldwork and analytical methods used to investigate radon exhalation in Peruvian
agricultural fields. First, the study area and sampling strategy are presented (Section “Study area”-“Point-
selection criterion and sampling”), which provide the foundation for the subsequent measurement systems
described in (Section “Measurement system”). Building on these experimental setups, Section “Artificial neural
networks implementation” introduces the implementation of the ANN, analysis of influential parameters,
multicollinearity assessment, and hyperparameter tuning (Section “Analysis of influential parameters”-
“Hyperparameter tuning”). To complement this implementation model, section “Simulation of the transport and
decay of radon and its progeny atoms in the air” details MC methods designed to model the physical transport
and decay of radon and its progeny atoms in air. Finally, section “Contribution of short-lived gamma-emitting
radon progeny to the proximal gamma-ray spectroscopy technique” addresses the influence of short-lived radon
progeny on gamma-ray spectroscopy measurements.

Study area

Four fields were carefully chosen for this study to encompass maximum variation of parameters. The selected
fields were called "Nazca, located at approximately 14°49'52.68" S latitude and 74°57’31.03” W longitude in
the Nazca region; ‘Yautdn, at approximately 9°30'32.72" S latitude and 78°00'02.32” W longitude in the Casma
region; ‘Santa Eulalia, at approximately 11°53'39.46” S latitude and 76°39'15.42” W longitude in the Huarochir{
region; and ‘La Agraria, at approximately 12°05'02.23" S latitude and 76°57'10.59” W longitude in the Lima
region. These fields were chosen for their diverse geographical characteristics, environmental parameters and
soil physiochemical properties. Fig. 1 shows a map created in QGIS of the four study fields, each classified by its
geomorphology (https://metadatos.ingemmet.gob.pe:8443/geonetwork/srv/spa/catalog.search#/metadata/ae9d
5935-ed4c-46a0-a826-6e0b9d5e20e2), as indicated in the legend.

Nazca is located in the Ica region of southern Peru, characterized by its hyper-arid desert environment
(one of the driest regions worldwide) and the iconic Nazca Lines. Table 1 shows its subsurface characteristics.
The district had a total population of 27,632, with 25,293 residents in urban areas and 2,339 in rural areas.
Agricultural land covered 9,464,153.52 2.

Yautdn lies in the Casma Valley, within the Ancash region along Peru’s northern coast. This area features
a coastal desert climate and fertile river valleys. Table 1 summarizes its subsurface characteristics. The total
population was 8,350, with 3,309 inhabitants in urban areas and 4,496 in rural areas. Agricultural land accounted
for 3,696,394.61 2.

Santa Eulalia is situated in the Santa Eulalia Valley (Huarochiri Province, Lima Region), within the Andean
foothills of central Peru. The valley is noted for its microclimatic diversity and fertile soils. Table 1 details its
subsurface characteristics. The population included 12,636 residents, predominantly urban (11,955 inhabitants).
Rural areas had 681 residents, with agricultural land covering 740,155.77 1,,2.

La Agraria, located at the Universidad Nacional Agraria La Molina (UNALM) in Lima, serves as a key
reference site for agricultural research due to its meticulously managed fields and standardized monitoring
protocols. Table 1 provides its subsurface characteristics. The district had 140,679 inhabitants, all urban.
Agricultural land spanned 4,653,458.61 m? and was classified as an “agricultural mosaic” in the MapBiomas
dataset. Notably, while agricultural areas in MapBiomas typically use a pixel value of 18, La Molina’s data lacked
this specific value, indicating its mosaic classification matches observed field patterns.
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Fig. 1. Map of the four study regions, classified by geomorphology. The studied field regions and areas are
outlined with dashed lines in different colors: green for Nazca, olive for Yautdn, pink for Santa Eulalia, and blue
for La Agraria. Created using Quantum Geographic Information System (QGIS) version 3.36.3.

Fields Geology Geomorphology Source
Nazca Alluvial deposit, composed of gravel and blocks with a sandy-silty matrix Alluvial terrace 2
At é\ollmu;i;lsli:ii?l)losit, accumulation of gravel, sand, silt, and clays with subangular to angular clasts of varying Aliivial e %
Santa Eulalia | Alluvial deposit, accumulations of rock fragments (sands, gravel, boulders, etc.) deposited as ancient terraces | Hillside or alluvial-torrential piedmont | 2
La Agraria Alluvial deposit, accumulations of rock fragments (sands, gravel, boulders, etc.) deposited as ancient terraces | Hillside or alluvial-torrential piedmont | %7

Table 1. Summary of geological formations, geomorphological features, and bibliographic references for the

selected fields.
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The demographic and agricultural data for the districts were analyzed using the 2017 National Census data*
and land cover rasters obtained from MapBiomas Peru (https://peru.mapbiomas.org). Data processing was
performed using QGIS.

To ensure representative spatial coverage across the identified study area, a point-selection strategy was
applied based on both environmental variability and logistical feasibility. The next section outlines the criteria
and approach used to select these sampling points.

Point-selection criterion and sampling

The sampling strategy was designed based on prior studies validating similar spatial scales for capturing soil radon
variability.?® demonstrated that 20 m spacing along transects (up to 2 km) effectively resolves radon variations
linked to lithology, elevation, and edaphic properties.?? further supported this scale, reporting coefficients
of variation (15-30%) within 20 x 20 m grids, which informed the minimum number of sampling points
required for reliable radon field characterization. This configuration optimally balances spatial heterogeneity
representation with systematic coverage, minimizing data redundancy while ensuring reproducibility. Based on
this evidence, each field was subdivided using a grid system, and each grid cell comprising an area approximately
400 m? in size. Based on this subdivision, Nazca was divided into a certain number of grid cells, resulting in
approximately 199 grid nodes; Yautan into 43 grid nodes; Santa Eulalia into 18 grid nodes; and La Agraria into
8 grid nodes. Each grid node represents a measurement point.

At each measurement point, measurements of radon exhalation, meteorological parameters, soil moisture,
and ground-level gamma radiation were taken. The center of each grid cell was selected for measurements
of soil gas radon and thoron concentrations, as well as soil permeability. This assumes that each grid cell has
a spatial physiochemical homogeneity of the soil. In other words, soil gas radon/thoron measurements and
permeability were measured every 20-meter interval, where each set of four radon exhalation measurements
is associated with one measurement of soil gas radon/thoron and permeability. This methodology offers higher
precision than the 100-meter interval used by*° to train the model, and offers better quality in data variability.
Furthermore, 20-meter intervals ensure that individual measurements of soil gas radon/thoron and permeability
do not interfere with one another, because the sphere from which the air from the soil is pumped around the
buried probe has an approximate radius of 12 cm. This was described by*! when using a device that extracts soil
air through a probe.

For soil sampling, we employed a method suggested by UNALM?>2 Given the relative uniformity of the
fields, a randomized sampling technique was applied to collect small portions of soil at a depth of 10 cm,
avoiding fertilizers, accumulated plant material, or manure. These samples were taken from various locations
throughout each studied area. These smaller portions were then combined to form a composite 1 kg sample,
ensuring a representative mixture of the soil across the entire field. Care was taken to avoid sampling areas with
visible biomass or fertilizer to ensure the sample was representative of the physiochemical properties of the soil.
Although only a mixed soil sample was considered for each agricultural area, which can be a relevant parameter
influencing radon exhalation. The largest study area, Nazca, is crossed by active geological faults®***, which
would make possible an increase in the levels of radon exhalation in the areas adjacent to these®**. The UNALM
laboratory analyzed the following categories: soil physical properties, soil chemical properties, cation exchange
and saturation, and soil soluble ions and saturated paste parameters.

The parameters involved in the study encompass a wide range of multiple scientific domains, as shown in
Table 2.

Following the selection of sampling locations, measurements were conducted using a combination of field
instruments and laboratory analyses. The following section describes the systems and protocols used to quantify
radon flux and characterize relevant edaphic and meteorological parameters.

Category Parameters

Soil Physical Properties ® Permeability (m?) e Bulk Density (g cc™1) e Sand (%) e Silt (%) e Clay (%)

® Soil Moisture (%)

Soil Moisture

Soil Chemical Properties pH (1:1) «CaCO3( %) ® Organic Material (%) ® Phosphorus (ppm) e Potassium (ppm)

Cation Exchange Capacity (meq in 100g) ® Exchangeable Ca?T, Mg?*, K*, Na™, A1T3 + HT o Sum of

Cation Exch: d Saturati
ation Exchange and saturation Cations @ Sum of Bases ® Base Saturation (%) e Saturation (%) e Exchangeable Sodium Percentage (%)

pH of Saturated Paste Extract @ EC of Saturated Extract (dS mfl) ® Soluble Ca?™, Mg2+, KT, Na+(
meq L~ 1) ® Sum of Soluble Cations e Soluble NO;", CO§7 ,HCOg, SO‘217 ,Cl™ (meq Lil) e Sum of
Soluble Anions e Soluble Boron (ppm) @ Soluble Gypsum (%)

Soil Soluble Tons and Saturated Paste

Radon and Thoron Measurements Radon Exhalation (Bq m~? day™ 1) @ Radon Concentration (Bq m~?2) e Thoron Concentration (Bq m~3)

Air Temperature (°C) o Relative Humidity (%) e Absolute Humidity (g m~3)

® Pressure (mmHg) @ Wind
Velocity (km h™ 1) @ Dew Point (°C)

Atmospheric and Weather Conditions

Thermal and Comfort Indices

Thermal Sensation (°C) e Hot Flash Index (°C)

Solar and Light-Related Variables

UV Index e Illuminance (Ix) ® Solar Irradiance (W m ~2) e Solar PAR (pmol m~2s7 1)

Magnetic and Electrical Properties

Magnetic Heading (°) e True Heading (°) @ Electrical Conductivity (dS m™ Ty

Topographical Data

Altitude (m)

Table 2. Categorization of 56 parameters (environmental, geological, and soil properties) used in radon

exhalation modeling.
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Measurement system

Several instruments were employed to collect different parameters. Given the extensive number of measurements
points, which exceeding the available flux monitors, in each field, we developed a strategic methodology using
only nine radon flux monitors. In each field, we deployed these monitors for a two-hour measurement period.
During this time, we visited each of the nine points sequentially to record meteorological parameters, ground-
level gamma radiation, and soil moisture. The two-hour duration allowed approximately 10 minutes at each
point to capture these additional measurements before moving to the next location.

The radon exhalation rate was measured using nine flux monitors equipped with electrets from Rad Elec,
USA. Each monitor has a chamber volume of 960 mL and a base area of 283 cm?, with a stainless steel collar
that is partially buried to ensure a tight seal with the soil, preventing leakage and minimizing external air
interference. The flux monitors were placed on the soil surface at each point for an exposure period of two
hours. This exposure time was determined based on the manufacturer guidelines, which suggest that there must
be a voltage loss of at least 20 volts, and a pilot testing. The electrets inside the flux chambers are sensitive
to background gamma radiation’; therefore, to ensure accuracy, natural gamma radiation in nGy h™" was
also measured at each location to correct for its influence on the electret measurements. The methodology and
calculation of the radon exhalation rate are described in*’.

To measure gamma dose rate, a radiation detector from Gamma-Scout, Germany, was used. This device was
placed at the soil surface near the radon flux monitor for approximately 10 minutes to obtain a reading gamma
radiation levels at each measurement point. According to other studies, stable values from measurements are
obtained with no fluctuations greater than +10%°%, and 3 minutes are sufficient to obtain consistent data®. At
the same time, meteorological data, including air temperature, relative humidity, absolute humidity, pressure,
wind speed, dew point, wind chill, humidex, UV index, illuminance, solar irradiance, and solar PAR, were
recorded for the same 10-min period using a wireless weather sensor with GPS from PASCO. Soil moisture
levels were assessed using a Teros 10 sensor from Meter Group, USA. The Teros 10 was placed around each flux
monitor at least five times at a depth of approximately 10 cm, which is a critical layer for both agricultural water
management***! and radon exhalation studies. This depth is particularly important because soil moisture at 10
cm (the final "layer’ before reaching the atmosphere) can directly influence the amount of radon escaping from
soil into the atmosphere.

The Rad7 monitor from Durridge, USA, equipped with a stainless steel probe, was used to measure soil
gas radon and thoron concentrations. The probe was inserted into the soil to a depth of approximately 80 cm
at each measurement point (the center of each grid cell) for approximately 30 minutes to reach equilibrium
between radon atoms and their progeny’. During the measurement period, the sniff mode method was applied,
where the device provided readings every 5 minutes. The final result was the average of the highest stable values.
Typically, soil radon concentration values initially increase and then reach a stable level during a specific time of
measurement. After each measurement, a purging process with radon-free air was performed to clean the chamber
monitor and remove any residual radon progeny, preventing cross-contamination between measurements. In
addition, the lower detection limit is 4 Bq 1, —3, according to the manufacturer’s specifications. The Radon-Jok
device from radon v.o.s., Czech Republic, was employed to measure soil permeability for radon gas at the same
locations where soil gas radon and thoron concentrations were measured. Soil permeability directly influences
the movement of gases within the soil, which in turn affects radon exhalation rates. In this work, values of soil
permeability to radon gas has been grouped into high, medium and low*2. These measurements were critical for
understanding how the physical properties of the soil contributed to gas transport processes**.

The collected data served as the input for data-driven modeling. Building on the experimental setup, the next
section introduces the implementation of ANN, designed to model the nonlinear relationships between radon
exhalation and Edaphic and meteorological parameters.

Artificial neural networks implementation
To develop model structure and input selection, an initial analysis was conducted to identify the most influential
parameters affecting radon flux. This step aimed to enhance interpretability and reduce data dimensionality.

Analysis of influential parameters

The selection of factors is a critical step in constructing ANN models. This study considered six independent
factors related to soil properties and environmental conditions. Pressure directly influences radon exhalation
from soil. When atmospheric pressure decreases, a pressure gradient is created between the soil, where pressure is
slightly higher, and the external air, driving radon migration into the atmosphere’. Increased temperature raises
the kinetic energy of particles, accelerating diffusion processes, which means radon moves more rapidly through
soil pores to the surface at higher temperatures™®. Solar irradiance affects soil moisture through evaporation.
Lower soil moisture increases permeability, intensifying radon exhalation. In dry soils, air-filled pores facilitate
radon diffusion, resulting in high exhalation rates**. Permeability, which defines the ability of soil to allow fluid
flow, directly influences radon migration from soil to surface. Soils with large, well-connected pores exhibit
higher permeability, enhancing radon migration*’. Bulk density significantly affects radon exhalation. Higher
bulk density, typically from soil compaction, reduces pore space and connectivity, lowering soil permeability and
restricting radon diffusion to the atmosphere*®.

One problem that can commonly arise is multicollinearity. This problem arises when two or more predictor
variables are highly correlated. Using highly correlated or redundant variables can negatively affect model
performance and interpretability?’. This in turn can generate instability in the predictions and reduce the
accuracy of the model. To avoid this, a multicollinearity analysis can be performed and correlation coefficients
can be used to filter, identify and select the most relevant predictors48. From an initial set of 56 variables, a
Pearson correlation analysis was conducted, for this study a maximum acceptable correlation threshold of 0.5
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was established'®, ensuring that redundant or highly correlated factors were excluded. This step helped preserve
the independence of variables and prevented potential instability in the model’s performance. Additionally,
variables derived from laboratory soil analyses that provided constant values for each sampling zone were
excluded, as they lacked the variability needed to explain differences in radon exhalation.

Moreover, due to the inherent variability of environmental measurements, errors and uncertainties were
inevitably present in the data. These variations could be attributed to natural geological factors, such as faults in
the Nazca region, or occasional measurement errors (incorrect electret readings). To mitigate the influence of
outliers, the 1.5 times interquartile range (IQR) rule* was applied. This method identified and excluded extreme
values, ensuring a more robust analysis and enhancing the reliability of the results.

Thus, the variability in radon exhalation is determined by the combination of these factors, which interact
nonlinearly. Traditional modeling methods struggle to capture these interactions fully, making machine learning
techniques valuable tools for understanding the mechanisms governing radon exhalation.

To avoid redundancy and ensure statistical independence among predictors, multicollinearity analysis and
mutual information (MI) scoring were then applied. These techniques supported the refinement of input features
for robust ANN performance.

Multicollinearity analysis and mutual information (MI)

Using highly correlated or redundant predictors can negatively affect model performance®’. To address this,
multicollinearity analysis and correlation coeflicients were used to identify and select the most relevant
predictors. The study only considered physical characteristics of soil and environmental parameters influencing
radon exhalation behavior, as shown in Table 3. In addition, values obtained from laboratory that provided a
single value for each sampling area were excluded from the analysis. This decision is justified by the constant
nature of these variables, which do not contribute variability data and, therefore, do not contribute to differences
observed in radon exhalation.

Table 3 presents the parameters measured at the various study locations. A Pearson correlation analysis was
performed to assess the relationships between soil radon exhalation values and the six influencing factors. The
results revealed weak to moderate linear correlations among the factors (Fig. 2).

Moderate positive correlations were observed between solar irradiance and air temperature (0.42), pressure
and bulk density (0.37), and soil moisture and pressure (0.30), indicating some degree of dependence between
these variables. Additionally, weak positive correlations were found between bulk density and soil moisture
(0.11) and air temperature and soil moisture (0.26). On the other hand, weak negative correlations were
identified between permeability and pressure (-0.28), solar irradiance and pressure (-0.11), and bulk density and
permeability (-0.14), suggesting that these variables do not exhibit a clear linear relationship. Overall, the results
suggest that most of the variables are independent of one another.

As previously mentioned, a potential issue that may arise is multicollinearity, which occurs when two or
more predictor variables are highly correlated. This can significantly affect the performance and interpretability
of the model, leading to instability in predictions and reduced accuracy. To ensure the absence of significant
multicollinearity effects among the predictors, a multicollinearity analysis was performed, which was used as
a method for filtering predictors*®. The multicollinearity analysis was performed using Tolerance (TOL) values
and the Variance Inflation Factor (VIF). The criteria used to filter these predictors were VIF > 5 and TOL <
0.21%4%30 This approach ensures that predictors contributing to multicollinearity are excluded, improving the
robustness and reliability of the model, as shown in Table 4.

Table 4 presents the results of the multicollinearity analysis. The VIF values range from 1.113 to 1.391, and
the TOL values range from 0.718 to 0.897 for all factors. Permeability exhibited the weakest linearity (VIF
= 1.1137), while pressure had the highest VIF value (1.3918). It is also essential to determine the predictive
capacity of the selected predictors. For this purpose, techniques such as Information Gain Ratio (IGR) can be
used!. However, in this study, IGR is not directly applicable because it is designed for classification tasks with
discrete target variables, measuring how much information a feature provides about the target class to optimize
classification results through feature selection®. This would require prior discretization of the target dataset
(radon exhalation). Nonetheless, there are alternative approaches for evaluating the informational relationship
between continuous variables, as in our case. Mutual Information (MI) is a measure from information theory
that quantifies the dependency between two variables (datasets), regardless of whether the relationship is linear
or not. It can detect any type of relationship, including mean values, variances, or higher-order moments®. The
calculation of MI was implemented using Python’s scikit-learn library with a function that employs the kNN
algorithm to estimate probability densities and calculate MI, with the number of neighbors k = 3. This approach

Category Parameter Data Source

Bulk Density Soil sample analysis

Physical Characteristics of Soil | Soil Moisture Teros 10 sensor
Permeability Radon Jok
Pressure

Environmental Parameters Air Temperature | Pasco weather sensor

Solar Irradiance

Table 3. Optimized parameters selected for ANN model construction after multicollinearity analysis and
correlation-based predictor selection.
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Fig. 2. Pearson correlation matrix of selected predictors influencing radon exhalation rates, with significance
thresholds (p < 0.05).

Parameter MI Score | VIF TOL

Pressure 0.161436 | 1.391807 | 0.71849

Bulk Density 0.155884 | 1.187387 | 0.842186
Soil Moisture 0.070415 | 1.202375 | 0.831687

Air Temperature | 0.063171 | 1.334116 | 0.74956

Solar Irradiance | 0.029709 | 1.283447 | 0.779152

Permeability 0.003805 | 1.11374 | 0.897876

Table 4. Results of the multicollinearity analysis and contributions of the influential factors. Collinearity
Statistics include VIF (Variance Inflation Factor) and TOL (Tolerance).

allows for handling continuous data without the need for manual discretization®?. The MI results indicate that
the most important factors are pressure (MI = 0.1614) and bulk density (MI = 0.1558).

With the finalized input set, the ANN architecture was optimized using hyperparameter tuning. This process
aimed to improve generalization and predictive accuracy across the training and validation datasets.

Hyperparameter tuning

Once the multicollinearity relationships between predictors were identified and addressed, the next critical step
was the model optimization phase. Hyperparameter tuning becomes crucial in this context, as it is essential
for building highly performant deep neural networks. This is an iterative process of trial and error aimed at
finding the optimal combination of values for the configurable parameters of a machine learning model®?. These
parameters, which are not learned during training, can significantly impact the model’s performance. Some are
related to the structural configuration of the network, while others are associated with the learning algorithms>*.

In this context, Keras Tuner was used to efficiently explore hyperparameter ranges, testing methods like
Grid Search, Random Search, Hyperband, and Bayesian Optimization®®. Bayesian Optimization was selected
for its ability to model smoothness of the hyperparameter configuration space to guide the search more
efficiently by building a predictive model based on previous evaluations, strategically balancing exploration
and exploitation by leveraging past evaluations—unlike Random Search or Hyperband, which operate with less
or no dependency between successive evaluations®®. By automating this process, Keras Tuner facilitates the
identification of architectures and model configurations that maximize both accuracy and generalization. The
tuned hyperparameters in this study included the number of layers, number of units per layer, dropout rates and
learning rate.

The final neural network architecture, which was optimized through this process is illustrated in Fig. 3,
consists of a combination of different types of layers to address the regression task. Specifically, it included GRU
(Gated Recurrent Unit) recurrent layers, dropout layers (Dropout) for regularization, and densely connected
layers (Dense). The hidden layers have ReLU activation functions, their structure was determined by the search
algorithm. Finally, the output layer, designed to provide the final prediction, consists of a single dense unit with
linear activation function. The model was compiled using the Adam optimization algorithm with a final learning
rate of 0.002 and Mean Squared Error (MSE) loss function.

For training and subsequent validation of this model, the data collected from the four measurement locations
were combined into a single data set. Before splitting, preprocessing was performed to improve the quality and
scale of the data. First, outliers were identified and treated using the 1.5 times interquartile range (IQR) criteria.
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Fig. 3. Detailed workflow for ANN model construction and evaluation, including GRU layers, dropout
regularization, dense layers with ReLU activation, and hyperparameter optimization via Keras Tuner.

Parameter Set Min Max Mean | SD Q1 Q3 Skewness
Pressure Train | 670.42 | 744.43 | 707.86 | 13.02 |710.38 | 712.22 | - 0.08
(mmHg) Val | 670.17 | 74438 | 70535 |19.05 |693.57 |712.53 | - 1.12
Blkerisiiy Train | 0.7 1.54 121|018 [1.09 [1.33 [-o028
(gcc™) val |07 1.46 114 |020 [o098 [127 [-o022
Soil Moisture | Train | 0 54,5 1522 | 1072 |680 [2160 | 208
(%) Val |246 |446 1200 |9.84 |6.02 |1440 | 092
Air Temperature | Train | 1671 [3746 2703 |487 [2282 |3118 | 020
(0 Val |18.32 [34.15 |2555 |465 |2215 |28.88 |-0.05
Solar Irradiance | Train | 0 1060.77 | 195.1 |304.93 |14.83 |225.10 | l.64
(Wm™?) Val |002 |941.44 |20465 |327.79 [11.44 |20683 | 1.59

Train | 0 2 2 051 |2 2 -371
Permeability

val | o 2 2 046 |2 2 -2.16

Table 5. Descriptive statistics of selected predictors post-multicollinearity analysis. The permeability
parameter is classified as low = 0, medium = 1, and high = 2.

Next, to prepare the input features for the neural network, they were normalized by scaling the data to the range
[0, 1]. Subsequently, the combined set was split by a standard method using the train_test_split function of the
scikit-learn library obtaining 80% of the data for training and the remaining 20% for validation. While this
random split method ensures a random distribution of features across the board, it is important to note that
it does not proportionally represent each of the four measurement locations in the resulting sets. To assess the
representativeness and statistical comparability of these subsets, a descriptive analysis was performed. Table 5
presents descriptive statistics for each variable in the training and validation sets. The results show that, although
most of the variables present very similar statistics, there are some cases in certain statistics that present more
notable differences, the impact of which will be evaluated in subsequent sections. The metrics to be used for the
final evaluation of the model will be Mean Absolute Error (MAE), Mean Squared Error (MSE-RMSE) and Mean
Absolute Percentage Error (MAPE).

While the ANN approach captures complex empirical relationships, it does not explicitly account for
underlying physical mechanisms. To address this, MC methods were applied to model the stochastic transport
and decay of radon and its progeny atoms in the air.

Simulation of the transport and decay of radon and its progeny atoms in the air

In this section, we describe the simulation of Brownian diffusion of radioactive atoms using a Python script.
The simulation models the transport of the radon and its progeny based on the stochastic Langevin equation,
with the solution provided by'*. Although radon transport in air involves diffusion, advection, and convection,
this study considers only Brownian diffusion and advection, as convection primarily affects radon transport at
higher altitudes and larger atmospheric scales, rather than in the near-surface boundary layer®’. The solution for
the one-dimensional Brownian motion of a radioactive atom, in the absence of drift, reduces to:
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z(t+ At) = z(t) + V2DAt - g (1)
where x(t) is the atom’s position along the x-axis at time t, D = 0.054 cm? s715%8, At is the time steps, and
g is a Gaussian random number with zero mean and unit variance. These Gaussian random numbers
were generated using the Box-Muller transform®. According to Box and Muller, g can be expressed as

—2-1n(&,) - cos(27 - &), where &, and &, are independent uniform random numbers between 0 and 1.

The choice of At, the simulation time step, is critical in accurately modeling atom diffusion. A smaller A
t allows the simulation to capture finer details of the Brownian motion and decay process, yielding a more
accurate depiction of the transport of radon or its progeny from soil-air interface to air. However, too small a A
t can make the simulation computationally expensive, while a larger At may oversimplify atom movement and
potentially miss crucial events, such as the decay of short-lived progeny. Thus, a step of 20 seconds was selected
to strike an optimal balance between accuracy and computational efficiency.

In this simulation, we first estimate the number of radon atoms needed to achieve the measured radon
exhalation rate. Given the measured exhalation rate in Bq m~2 day ™' we use this value to calculate the total
number of radon atoms exhaled from a 1 m? area over a day, accounting for the radioactive decay properties of
222Rn. The number of radon atoms exhaled per day from a 1 m? area can be estimated by using the relationship
between the activity and the number of atoms present in a decaying state:

Activity
A

Number of Radon Atoms = 2)

where the activity is in Bq, and A is the radon decay constant derived from its half-life.
Next, we use random sampling to simulate the lifespan of each radon atom and its progeny. The lifespan of
radon (%4 fespan) and each progeny atoms are calculated using the expression:

tiifespan = —7 - In(1 — &) 3)

where 7 is the mean lifetime, and ¢ is a uniform random number between 0 and 1. This method provides a
realistic estimate of each atom’s total life until decay, enabling the simulation to track radon decay through its
progeny until 21°Pb. The simulation stops at 2°Pb since it’s the first long-lived progeny (22.3 year half-life). The
preceding short-lived progeny pose the greatest radiological hazard due to their intense alpha emissions, while
long-lived progeny slow decay makes it far less significant for radiation exposure assessments.

The flow diagram in Fig. 4 outlines the process, starting from the creation of a radon atom on the exhalation
surface. Its transport and decay occur, as for its progeny, until the last short-lived progeny decay, 2*Po.

To include the influence of air movement on radon and its progeny, we introduced an additional directional
component to each atom’s position. This was modeled by adding the x component of the velocity that represents
the wind speed in the x-direction (plane parallel to the surface soil) at each time step®:

z(t + At) = z(t) + V2DAL - g+ v, - At (4)

where v, is the wind velocity in cm s~ L. This approach captures both the random diffusion of atoms and their
drift due to wind, providing a more comprehensive model of radon and its progeny transport. The coordinates
y and z are determined in analogous way. In addition, due to the stochastic nature of the MC method, the
simulation was repeated ten times to statistically estimate the uncertainties associated with this process.

In atmospheric environments, radon progeny atoms typically exist in two states, as unattached and attached
to aerosols®!. Although unattached atoms persist in the air for a very short time (<1 seconds)®?, meaning the
majority are in the attached state, this simulation simplifies the process by not accounting for these different
states. This choice is made for computational efficiency, but future work will aim to incorporate these finer
details to enhance the model’s accuracy.

It should be noted that a constant wind speed to simplify airflow modeling and does not account for attached/
unattached progeny to aerosols.

z“Pb

222Rn

1“"0 lll'll)b

i instantaneous
Bigespan o= 10g(1-80) |

§ bt e 108018)  Hiepan =T 102Gk bipan == TopylOg

Fig. 4. The schematic flow diagram of Brownian dynamics of 2*?Rn and its progeny, modeled with steps of
duration At. The lifespan of each atom is calculated based on its specific mean lifetime, using uniform random
numbers £1, €2, €3, and &4. 2*Po decays instantaneously to 210pp,,
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As radon progeny also contribute significantly to gamma-ray signals in environmental monitoring, their
contribution must be considered. The final section evaluates the impact of short-lived gamma-emitting progeny
affect on the interpretation of the proximal gamma-ray spectroscopy technique.

Contribution of short-lived gamma-emitting radon progeny to the proximal gamma-ray
spectroscopy technique

This proposed simulation, provides valuable insights into the diffusion behavior of short-lived radon progeny,
specifically gamma emitters such as 21*Pb and 2!4Bi. These simulations enable the tracking of the final positions
of these radon progeny gamma emitters just before decay. By modeling the isotropic emission of gamma rays at
each decay position using MC methods implemented in Python, it is possible to estimate the total efficiency of a
3" x 3" sodium iodide (Nal) detector positioned 2.25 m above a 1 m? square ground, with the detector oriented
perpendicular to the soil surface, for these emissions.

In the context of gamma spectrometry, the resolution of this Nal detector influences which energy peaks are
most effectively analyzed. For this study, the focus is on 2!Bi rather than 2!4Pb, as 2!“Bi emits gamma radiation
with distinct energies that are better suited for measurement®®. Among its several gamma emission energies, the
most probable and well-separated peak, at 609.312 keV, is ideal for minimizing interference from other peaks
and it depends on the energy resolution for that peak and the *?Th content due to the possible interference from
the 583 keV peak of 208T] and the 609 keV of 214Bi. Furthermore, if radon is exhaled from the soil, the detector
will register the contribution of 2Bi atoms decaying in the soil and those decaying in the air. In this case, an
overestimation of 214Bi concentration in the soil will be observed. Therefore, the number of net counts in the
peak must be corrected for contributions from airborne ?!*Bi atoms, ensuring that they are only due to 2“Bi
atoms in the soil.

According to the outputs obtained from Section “Simulation of the transport and decay of radon and its
progeny atoms in the air”, the initial decay positions for the 2'*Bi gamma emitter (2 Bi, , YBig  2Bi( )- Gamma rays
are assumed to be emitted isotropically, modeled by computing the direction vector components (dz, dy, d-)
based on spherical coordinates. These are calculated as:

dx =sin(6) cos(¢)

dy, =sin(0) sin(¢) (5)
d. = cos(0)

where ¢ is sampled uniformly from 0 to 27r( azimuthal angle), and cos() is sampled uniformly from -1 to 1 to
ensure isotropic angular distribution. This approach accurately models the random directions of emitted gamma
rays.

The detector is modeled as a finite cylindrical region with radius 74 = 3.81 c¢m, height hg = 7.62 cm, its
height from 2Zmin = 100 cm to Zmaz = 100 + hg cm and located at its axis perpendicular to the surface soil.
For each ray, the simulation computes possible intersections with both the cylindrical surface and its bottom
base. For the intersection of the gamma ray with the cylindrical surface, the quadratic equation is solved as
folllows:

2 2
a =d; +d

b =2(zBiod> + ypiody) (6)

_ 2 2 2
C =B, + YBiy — T4

The discriminant (A) determines whether the ray intersects the infinite cylinder. If the discriminant is greater

—b+VA
2

than or equal to 0, the parametric values ¢1 and ?2 are computed as t1,2 = , and the corresponding

z-values (z1, 22) are checked against the cylinder’s height bounds [2min, Zma=]. For the bases, the intersection
Zmaz,min ~ZBig

condition is derived from the ray’s parametric equation t¢op bottom = F
=

, and the corresponding

x- and y-coordinates are evaluated as:

Ltop,bottom —L Big + ttop,bottom dy (7)

Ytop,bottom =YBig + ttop,bottom . dy

Theseintersections(toporbottombase)arevalidiftheradialconstraintissatisﬁed(w?onbottom + yfopjbottom <rd).
For all valid intersections, the entry and exit points of the ray within the cylinder are determined by the smallest
and largest valid parametric values, tentry and tesit. The corresponding 3D coordinates of the entry and exit
points are calculated, and the total distance traveled inside the cylinder is computed. The simulation outputs
both the total number of rays that intersect the cylinder, which provides the geometrical efficiency, and the total
distance traveled by these rays inside the detector. By using the mean distance traveled, the intrinsic efficiency
can be calculated by simulating the fraction of gamma rays that transfer energy to the Nal crystal. This fraction
is 1 - exp "%, where y is the total linear attenuation coefficient of Nal (excluding coherent scattering) for the
214Bj energy, and d is the average distance traveled inside the detector (cylinder)®%. This relationship quantifies
the probability of gamma rays interacting with the detector material and transferring energy. In addition,
the attenuation in air and in any medium between the gamma emission point and the Nal detector was not
considered in this work.
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Fig. 5. Prediction results for soil radon exhalation using the ANN model, including the training and validation
sets.

Tools Training | Validation
MAE 0.3717 0.3295
MSE 0.2108 0.1700
RMSE 0.4592 0.4124
MAPE (%) | 1.9904 1.2929

Table 6. Error metrics for the ANN model across training and validation datasets.

Using the total efficiency ntotai = 1g - 7; as fraction, which combines the geometrical (14) and intrinsic
efficiency (7;), it is possible to optimize the gamma proximal spectrometry technique, particularly in utilizing
the 214Bi gamma peak for evaluating water content in soil. It is important to note that 7;ota: cannot be directly
combined with the neat counts of 2*Bi, because 7tota1 uses the entire spectrum. For this reason, the peak-to-
total ratio PT(E) becomes particularly relevant. According to®, PT(E) for 2!*Bi is approximately 0.60, and the
full-energy peak efficiency for 214Bi is calculated as nr = ntotar - 0.60. To find the corrected count Neorrecteds
it should be calculated as Nppeasured - NF-

Results and discussion

The measured radon exhalation rates in agricultural soils ranged from 2040 to 2590 Bq m ™2 day ™" across study
sites, with values of 2200 + 610 Bq m~? day71 in Nazca, 2380 + 580 Bq m~2 day71 in Yautdn, 2590 + 230 Bq
m~2 day ™! in Santa Eulalia, and 2040 + 260 Bqm 2 day ! in La Agraria. These values are significantly higher
than those reported for non-agricultural environments®®-, highlighting distinct agroecosystem-specific trends.
This suggests that agricultural fields may enhance radon exhalation compared to natural or urban landscapes.

Artificial neural networks implementation
Fig. 5 displays the soil radon exhalation predictions for the training (80% of the data) and validation (20%) sets,
revealing a need to assess uncertainty, especially at extremes. Table 5 shows that predictor variables (pressure,
soil moisture, and solar irradiance) differ in distribution (dispersion, ranges, skewness) between the two sets-a
known source of model uncertainty. These variations likely contribute to the observed overestimation at low
values and underestimation at high values (Fig. 5).

The values for Mean Absolute Error (MAE), Mean Squared Error (MSE), Mean Absolute Percentage Error
(MAPE), and Root Mean Squared Error (RMSE) obtained in this study are presented in Table 6. The results
indicate that the model achieved an adequate level of accuracy in predicting radon gas exhalation based on the
meteorological parameters and physical properties considered in this study.

The results of the metrics indicate that the model achieved an adequate level of accuracy in predicting radon
gas exhalation as a function of the meteorological parameters and physical properties considered in this study.
Lower values of MAE indicate good prediction accuracy’’. On the other hand, the lower the RMSE and MSE
values, the closer the prediction values are to the observation values indicating better consistency between
model predictions!®”!.

The performances of the training and validation data sets of the ANN model architecture (Fig. 6a and b,
respectively) revealed a good reliability of the network.

The high value of R? =0.7949 for training and R?=0.7656 for validation indicate that the input factors
selected for the model adequately explain the variability of the target variable around its mean. On the other
hand, this represents a good model fit given that the network has learned to generalize the patterns present in
the training data and applies them correctly to new data, as shown in Fig. 7.

Fig. 7 displays fitted values against residuals, revealing slight discrepancies despite an acceptable overall R2.
This suggests that the model struggles to fully capture extreme values, likely due to variability and distributional
differences in environmental parameters. Similar findings in other studies support this observation, noting
that radon prediction errors often arise at elevated concentrations, driven by fluctuations in key factors like
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Fig. 6. Prediction results for soil radon exhalation rates (Bq m~2day ') using the ANN model, with R?
performance metric.
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Fig. 7. Adjusted data versus residuals and density histograms.

temperature, pressure, and humidity'®. Thus, the uncertainty in model predictions, particularly the bias
observed in the residuals for low and high values, is intrinsically linked to the variability and characteristics of
the distributions of the meteorological and soil property variables used as input.

Simulation of the transport and decay of radon and its progeny atoms in the air

Several studies!***72_employing similar methodologies in different contexts—have reported results comparable
with experimental data, thereby validating our approach. Considering these, our simulation effectively describes
radon and its progeny’s diffusion dynamics, which yield essential insights into environmental dispersion and
potential public health risks. This model’s results emphasize two primary perspectives: the diffusion dynamics of
radon and progeny atoms, particularly under varying air influence, and the gamma radiation contribution from
short-lived radon progeny, particularly above the ground surface.

Diffusion dynamics of radon and progeny atoms, particularly under varying air influence
Utilizing the obtained exhalation rate values and the Equation 2, we estimate radon atom production per unit
area (1 m?), yielding around 1.05x 10° radon atoms/day on average in Nazca, 1.13x 107 in Yautén, 1.23x10° in
Santa Fulalia, and 9.69x10% in La Agraria.

Our Monte Carlo simulation employed a 20-second time step (At) to model radon and progeny (*!8Po, 214Pb,
214Bj) diffusion-decay dynamics. This temporal resolution accurately captures radon’s decay chain evolution,
though progeny modeling becomes less precise due to their shorter half-lives while remaining physically valid.
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Using a simplified static-air model (Fig. 8), the spatial distributions, to understand radon and progeny behavior,
were analyzed and provide complementary data for health risk assessment.

Fig. 8 shows the distributions of nuclides remaining after one day (excluding 2!°Po, which decays fully).
For radon, 16.53+0.10% of atoms decay, equivalent to 1.73x10% decays day ' in a 256 m® outdoor space
in Nazca (ignoring wind effects). Converting decay rates to activity for each study site yields outdoor radon
concentrations of ranged from 7.24 to 9.17 Bq m™ ~, as summarized in Table 7. These values, though low and
subject to environmental fluctuations, confirming minimal outdoor health risks.

As an illustrative extension of the outdoor analysis, we modeled an hypothetical potential radon accumulation
in a simplified indoor environment representative of a rural dwelling with a 4xX4 m footprint and a 3 m ceiling
height (48 m® total volume). This scenario assumed zero ventilation and a bare soil floor, representing a worst-
case accumulation condition. Under these assumptions, estimated indoor radon concentrations ranged from
170 to 216 Bq m ™ across the four sites, with Santa Eulalia exceeding Peru’s national indoor action level (73: 200
Bq m™?), as also summarized in Table 7. Santa Eulalia, with the highest estimated indoor level (Bqm ™) and a
largely urban population near agricultural zones, poses particular concern.
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Fig. 8. Spatial distribution of radon (***Rn) and its progeny (*'¥Po, 2*Pb, 2!4Bi, and ?!°Po) exhaled from a one-
square-meter soil area over one day, assuming no air movement. The XY-plane represents the soil surface (in
meters) with the vertical axis indicating height. The upper-left subplot displays the combined distribution of all
nuclides, providing an overview of their dispersion, while the remaining subplots show individual distributions
for each nuclide.
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Fields Outdoor concentration (Bq m~2) | Indoor concentration (Bq m—3)
Nazca 7.83 £0.01 184 £ 31
Yautan 8.43 £0.01 199 £33
Santa Eulalia | 9.17 +0.01 216 + 36
La Agraria 7.24£0.01 170 £ 28

Table 7. Estimated radon concentrations for each study site under outdoor and hypothetical indoor scenarios.
Outdoor values correspond to modeled radon concentrations in a 256 m ™ open environment without wind
influence. Indoor values are based on a worst-case scenario assuming a 48 m ™ enclosed room with bare soil
flooring and zero ventilation.
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Fig. 9. Displacement of radon atoms and their progeny over time without considering air movement, with
shaded regions representing the range between the lower (bottom lines) and upper (top lines) displacement
values for both horizontal (XY plane) and vertical (height) movement. The left subplot shows the entire time
fr%m 0 to 8x 10° seconds with steps of 2x 10°, while the right subplot focuses on a shorter period, from 0 to
5e” seconds.

The demographic profiles of the study regions provide important context for evaluating potential public
health implications of both outdoor and hypothetical indoor radon exposure. Rural populations range from
681 (Santa Eulalia) to 4,496 (Yautdn), with Nazca and La Molina being predominantly urban. While outdoor
radon concentrations remained quite low, modeled indoor concentrations under worst-case conditions (Table 7)
are within a close range of Peru’s 200 Bq m ™ action level. Although these values are based on simplified
assumptions—such as zero ventilation and full soil exposure—they offer a conservative baseline for identifying
areas where further assessment may be needed. In particular, rural dwellings with limited airflow and direct soil
contact in areas like Nazca and Yautdn may warrant targeted indoor monitoring and implementation of low-cost
mitigation strategies, such as improved ventilation or soil sealing, to minimize potential health risks.

To understand the atoms’ diffusion over time and how far or high atoms move, Fig. 9 presents the total
displacement of the nuclides during a day in both the XY and vertical directions, from the point of radon
exhalation to the final decay of 2Po.

Fig. 9 depicts the displacement of radon and its progeny over time, the shaded regions in the figure illustrate
the range of displacements for both the horizontal (blue) and vertical (red) directions, highlighting its variability
across time. During the initial period, fluctuations occur as expected due to Brownian motion, after which
displacement stabilizes in both the vertical and horizontal directions. This stability occurs because 2*Po, no
longer moves, as this decay happens almost instantly. We do not follow its nearest daughter (>!°Pb) because
it has a much longer half-life, which is less relevant to the public health risks associated with the inhalation of
radon progeny. The vertical and horizontal displacement and the stability have important implications for radon
exposure and public health, especially in confined environments. Understanding the extent and direction of
radon movement aids in predicting where radon and its progeny may accumulate, which is crucial for assessing
inhalation risks.
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In agricultural sector and rural areas where buildings may be constructed over bare soil’%, the vertical
displacement behavior illustrated here is particularly relevant. Progeny like polonium can settle in low-ventilation
areas, leading to higher concentrations and, consequently, increased health risks for inhabitants. However,
without accounting for the attachment of progeny to airborne particles or several surfaces, this concentration
may reasonably decrease, as attachment can reduce the number of unattached radon progeny in the air®2

Fig. 9 also illustrates the rule that nearly all atoms of a specific nuclide have decayed after approximately seven
half-lives. This is evident in the plot, as around 1.93X 10" seconds (i.e, for radon: 3.826 x 24 X 60X 60 seconds),
the displacement remains stable, indicating that the progeny no longer moves significantly due to rapid decay.
As radon atoms can travel long distances along this path its progeny can be inhaled, contributing to health risks
for people in the surrounding area if no external factors dilute this possibility.

Similarly, when the airflow is set to the maximum observed wind speed of 9.72 cm g—1, as measured by
our wireless weather sensor during all measurements, the results are shown in Fig. 10. Although a constant
wind speed was assumed for simplicity, this scenario represents the upper bound of radon and its progeny
displacement under favorable conditions, illustrating how far they can travel. In contrast, turbulence or highly
variable wind could reduce the total displacement”.

Unlike previous distributions without airflow, Fig. 10 demonstrates a significantly wider horizontal spread of
atoms due to wind-driven transport. In the 2*Rn distribution, undecayed radon clusters disperse over thousands
of meters. While such dispersion may reduce local concentrations, it also increases the risk of radon infiltration
into buildings over large areas, particularly in open regions like agricultural zones”.

Although radon transportis primarily diffusion-limited, wind significantly enhanceslong-range displacement.
This can lead to elevated indoor concentrations from outdoor sources, though this contribution is generally less
significant than radon entering through foundation cracks or building materials. Without adequate ventilation,
accumulated radon and its progeny may reach hazardous concentrations indoors. These findings underscore
the critical importance of proper structural ventilation as a primary mitigation strategy, as further illustrated in
Fig. 11.

Fig. 11 visually demonstrates the impact of airflow on the displacement of radon and its progeny over
time. The left subplot captures the extensive horizontal (XY) displacement reaching up to 10° meters, while
the right subplot zooms in on a shorter time scale to showcase the initial phases of displacement. The shaded
regions indicate the range of movement for each nuclide, with the horizontal displacement (in blue) extending
significantly more than the vertical displacement (in red) due to airflow. This pattern supports the understanding
that wind direction and speed play crucial roles in determining radon’s reach and concentration in open spaces.
For public health, the insights from Fig. 11 underscore the necessity of considering environmental airflow when
assessing radon exposure risks. In areas with strong winds, radon can disperse over long distances, potentially
affecting remote locations”®7”.

Contribution of short-lived gamma-emitting radon progeny to the proximal gamma-ray spectroscopy technique

In this section, a bare crystal detector was used to estimate the total efficiency. The detector in the simulation was
positioned at a height of 2.25 m above the ground, following similar approaches adopted in other studies?*-%.
This height makes the spectrometer more suitable for measuring atmospheric or dispersed radioactive
contamination, such as 214Bi, rather than ground-level radiation. In addition, the agricultural field selected as an
example was La Agraria, due to its minimal interference from biomass at this stage, prior to sowing. This setting
allows for more reliable gamma emission measurements, as the exhalation from the soil can be approximated to
produce around 9.73 x 10® radon atoms per unit area over a 24-hour as results from section “Simulation of the
transport and decay of radon and its progeny atoms in the air”. Using these initial parameters, Table 8 presents
the simulation results.

In Table 8, the second column shows the number of airborne atoms immediately before their decay and
gamma emission. These gamma rays are potentially detectable by the spectrometer. The third column is derived
by applying the simulation described in section “Simulation of the transport and decay of radon and its586
progeny atoms in the air”, which calculates the geometrical efficiency. The simulation was run ten times to
enhance the statistical results of the MC methods. The fourth column is estimated by using the total linear
attenuation coefficient of 0.07818 for 609.312 keV from XCOM (https://physics.nist.gov/PhysRefData/Xcom/h
tml/xcom1.html) and the density of the crystal, which is 3.67 g cm™>. The fifth column extends the analysis to
determine the total detection efficiency, integrating contributions from geometrical and intrinsic efficiencies for
each nuclide. The value of 2.82 x 10~ means that the vast majority of emitted gamma rays from 2'4Bi, created
from radon exhalation in 1 m? over one day, are not recorded by the detector, this implies that the contribution
of 214Bi from radon exhalation to the overall gamma signal is minimal. This significantly reduces the risk of
overestimating the counts of 2'4Bi in the soil. This finding is crucial in settings where there is no biomass in fields
or large crops. Otherwise, the potential attachment of radon progeny to biomass (due to tall crops), can affect
the movement (due to wind velocity) and distribution of 2*Bi. In addition, the corrected net counts from 2B
calculated as section “Contribution of short-lived gamma-emitting radon progeny to the proximal gamma-ray
spectroscopy technique”, is equal to 0.01692% of the measured net counts.

Conclusions

This study demonstrated the feasibility of using ANN to predict radon exhalation from agricultural soils based
on edaphic and meteorological parameters. The model achieved strong performance (R? = 0.83 for validation),
capturing complex, nonlinear relationships with minimal overfitting. Among the 56 variables analyzed across
four fields, pressure, air temperature, solar irradiance, soil moisture, permeability, and bulk density emerged as
key drivers of radon exhalation.
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Fig. 10. Spatial distribution of radon atoms (*??Rn) and its progeny (*!*Po, 214Pb, 2!*Bi, and !°Po), caused by
radon exhaled from the soil over a one-meter-squared area of soil during one day, considering air movement of
9.72 cm g—1. The top-left subplot is the combined distribution of all nuclides, while the remaining subplots are
the individual subplot of each nuclide.

Complementing the ANN analysis, Monte Carlo simulations modeled the transport and decay of radon and
its progeny in open environments, showing that radon atoms can migrate considerable distances under certain
conditions. Although outdoor concentrations were well below health reference levels, these findings underscore
the importance of spatial dispersion and support the need for radon monitoring in agricultural areas. Given the
proximity of rural populations to cultivated soils in several study regions, continued monitoring is essential to
ensure long-term public health protection and to guide future assessments or mitigation efforts where needed.

The study also addressed the potential influence of short-lived radon progeny on proximal gamma-ray
spectroscopy for soil moisture measurement. It was found that most gamma emissions from 2*Bi over a 1 m
area were not detectable, underscoring the importance of accounting for radon-induced background effects in
radiometric sensing.

Future work should focus on expanding the dataset to include more diverse field conditions and broader
variability in exhalation rates, which would enhance model robustness and generalizability. Incorporating
additional predictors such as radionuclide concentration, groundwater depth, and geological features may
further improve prediction accuracy. In the simulation, the assumption of constant wind speed neglects near-
surface turbulence and the exclusion of aerosol attachment and vegetation plate-out effects likely underestimated
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Fig. 11. Displacement of radon atoms and their progeny over time considering air movement of 9.72 cm

s~ 1, with shaded regions representing the range between the lower (bottom lines) and upper (top lines)
displacement values for both horizontal (XY plane) and vertical (height) movement. The left subplot shows the
entire time from 0 to 8 x 10® seconds with steps of 2x 10%, while the right subplot focuses on a shorter period,
from 0 to 5e6 seconds.

Nuclide | Number of Atoms | 7)g M Ntotal

214B§ 557.7 +20.98 3.64x1074£137x107° 077 +5.68x 1072 | 2.82x 10" %41.15x107°

Table 8. Simulation results for the short-lived gamma-emitting radon progeny (*'*Bi). Detection efficiencies
(fractional values) were computed for a 3” x 3” Nal(Tl) gamma spectrometer.

inhalation risks. Future simulations should include these processes, as well as distinguish between attached and
unattached progeny states, to improve the reliability of radiological risk assessments. Despite these simplifications,
the presented models provide a strong foundation for future studies addressing environmental radon dynamics
and their implications in agricultural settings.
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